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SUMMARY

An analysis is made of the transient heat-conduction effects in
three simple semi-infinite bodies: the flat insulated plate, the conical
shell, and the slender solid cone. The bodies are assumed to have con-
stant initial temperatures and, at zero time, to begin to move at a con-
stant speed and zero angle of attack through a homogeneous atmosphere.
The heat input is teken as that through a laminar boundary layer. Radi-
ation heat transfers and trensverse temperature gradients are assumed to
be zero.

The appropriate heat-conduction equations are solved by an iteration
method, the zeroeth-order terms describing the situation in the limit of
small time. The method is presented and the solutions are calculated to
three orders which are sufficient to give reasonably accurate results
when the forward edge has attained one-half the total temperature rise
(nose half-rise time). Flight Mach number and air properties occur as
parameters in the result. Approximate expressions for the extent of the
conduction region and nose half-rise times as functions of the param-
eters of the problem are presented.

INTRODUCTION

One of the major problems arising in supersonic and hypersonic
flight of aircraft is that of aerodynamic heating. It is apparent that
the maximum feasible speed for a given ailrcraft at a given altitude is
limited by this effect. This problem has been studied from many varying
points of view. Usually (refs. 1 to 3) these investigations were con-
cerned with determining the temperature attained at the surface of a
given body in steady flight or during a given flight history of variable
speed and perhaps variable altitude. ILittle attention has been devoted
to the effect of heat conduction within the body on the transient temper-
eture distribution of its surface. Kaye (ref. 2) considered the aero-
dynemic heating of an infinite-aspect-ratio, 8-percent-thick, solid-steel,
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symmetrical double-wedge wing of 5.5-foot chord in flight in a homogeneous
atmosphere and accelerating at a constant rate from Mach number 1.4 to
Mach number 6.0. Using a '"coarse network" of integration points, he
numerically integrated the appropriate two-dimensional heat-conduction
equations, using the best availsble experimental values of the heat-
transfer coefficient (ref. 4) and neglecting radiation transfers. He
concluded that, except near the leading and trailing edges, the chord-
wise conduction is relatively unimportant but that the transverse temper-
ature gradients, especially at midchord, are of considerable importance
in estimating the transient surface temperature distribution.

For actual aircraft in high-speed flight, the maximum rate of rise
of tempersture occurs at the leading edge or nose. Under the assumptions
of zero internal conduction, of no heat tramnsfer except that through the
boundary layer, and of steady flight beginning at zero time in a homo-
geneous atmosphere, the surface temperature approaches the local adia-
batic wall temperature at a rate which is theoretically infinite at zero
Reynolds number and decreases with increasing Reymolds number. With
internal conduction the surface approaches an equilibrium temperature
distribution at a rate which is finite everywhere end is appreciably
different from the zero-conduction rate at the smaller Reynolds numbers.
Nonweiler (ref. 3) has calculated the equilibrium temperatures near the
leading edge of the flat plate in steady flight by teking into account
conduction in the plate, heat input through a laminar boundary layer,
and loss of heat by radiation with the assumption that the difference
between the local equilibrium temperature and the adigbatic wall temper-
ature is large and constant.

The temperature lag due to heat capacity and heat conduction permits
aircraft to exceed for short times the speed for which the corresponding
equilibrium temperature is the maximm permissible temperature of the
body. Further, transient thermal stresses are important problems in the
structural design of high-speed aircraft. Thus it is important to deter-
mine quantitatively the effect of heat conduction on the transient temper-
atures near the leading edge or nose of as general a class of bodies and
flight conditions as possible.

The problem considered herein is that of determining the transient
effect of heat conduction parallel to the eirstream and within certain
simple infinitely long bodies in steady flight at zero angle of attack
in a uniform atmosphere. The bodies considered are the insulated flat
plate, the conical shell, and the slender solid cone. Heat transfers
due to radiastion are neglected. Because the effect of heat conduction
is important only near the leading edge or nose, the usual expressions
for heat transfer through an incompressible laminar boundary layer are
used. Corrections to the incoampressible heat transfer which do not
alter the temperature and Reynolds number dependence may be included in
the analysis. Because the leminar boundary-layer equations do not apply
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exactly at the leading edge or nose, the results of the analysis are
applicable for Reynolds number (based on distances from the leading edge)
greater than the order of 10. Temperatures within the body perpendicular
to the stream direction are assumed uniform.

SYMBOLS
1/2
k
8 conduction parameter, ( b > g, sec'l/2
%%

0.33kgU prt/3
b heat-transfer constant for flat plate, —W—m — , sec™1

PV h
be heat-transfer constant for slender solid cone,

1/3
0.33k,UPPr 1
Jg.—————zs———— g, sec”
PppY
c speed of sound, ft/sec
cp specific heat of material of body
sin ©

g geometry factor for slender solid cone, —0m8m —o

1l - cos 0
h thickness of flat plate or conicel shell, ft
kg thermal conductivity of air, Btu/(sec)(ft)(°R)
Ky, thermal conductivity of material of body, Btu/(sec)(ft)(°R)
M Mach number just outside boundary layer, Ufc
n sumeation variable
Pr Prandtl number
q rate of heat transfer through laminar boundary layer on flat

plate, Btu/(sec)(ft2)
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q, rate of heat transfer through laminar boundary layer on
cone, qy3, Btu/(sec)(ft2)

R Reynolds number, %? or g?
Rq Reynolds number at rear of conduction region at nose half-rise
time
s distance varigble on conical surface, measured from vertex, ft
T temperature of body, OR
Tow adisbatic wall temperature, °R
Ty initial temperature of body, °R
t time, sec
to nose half-rise time, sec
U stream speed Jjust outside boundary layer, fps
u stream speed in boundary layer (Blasius flat-plate solution), fps
T-T
K= i
Tawr - Ti
X distance variable on flat plate, measured from leading edge, ft
y distance perpendicular to wall (Blasius flat-plate solution), ft
a dimensionless time parameter
B dimensionless distance parameter
| dimensionless transient-heat-conduction parameter, R
atl/2
o value of 1 corresponding to rear boundary of heat-conduction

region

Py density of material of body
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] half vertex angle of slender solid cone
1 kinematic viscosity

Primes with a symbol denote differentiation with respect to 1.

Subscripts:

b'd at distance =x

8 at distance s

b for body material
g for gas (air)

METHOD OF ANALYSIS

Rate of Heat Transfer

For the simple semi-infinite bodies to be considered in this analysis,
the effect of internal heat conduction parallel to the stream direction
is significant only near the leading edge or nose. Therefore, it is
natural to assume for the heat transfer those expressions appropriate to
& laminar boundary layer. The present analysis is applicable to cases
in which the expression for the heat transfer to the body is of the form

T - T
q = (Constant) ~24__ -
Vx
or
T -T
q = (Constant) —2¥

g

vhere x 18 the distance from the leading edge of the flat plate and s
is the distance along the conical surface from the vertex of the conical
shell or the slender solid cone. Thus, the real assumption regarding the
heat input is the temperature and distance dependence. Compressibility
end nonuniform-surface-temperature effects which do not alter the temper-
ature and distance dependence may be included in the present analysis by
suitable changes In the constant of proportionality. For simplicity the
usual expression for the heat transfer in the incompressible isothermal
case is assumed.
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The rate of heat transfer through a unit area of an incompressible
laminar boundary layer on the flat plate is

- T
- o.35g Uprl/5 T (1)
x1/2

where R, 1is based on the distance x from the leading edge. Equa-

tion (1) may be derived from the first equation on page 626 of refer-
ence 5. Hantzsche and Wendt (ref. 6) have shown that the laminar
boundary-layer heat transfer on & cone is J? times that on the flat
plate with the same free-stream conditions just outside the boundary
layer. Thus it follows that the rate of heat transfer through unit area
of a laminar boundary layer on the cone is

%—O%FkUmyi————=ﬁq (2)

where Rg 1s based on the distance s from the vertex along the surface

of the cone. Since no satisfactory representative length exists for the
semi-~infinite bodies to be considered in the analysis, the Reynolds num-
ber is chosen as a suitable dimensionless distance parameter.

The expressions (1) and (2) are based on the assumption that the
Blasius flat-plate solution for the laminar boundary layer is correct.
Inasmuch as it is known that the Blasius solution is not correct at very
low Reynolds numbers, an estimate of the Reynolds number at which the
Blasius solution fails was mede by the following calculation:

The Blasius solution was used to calculate the term v éﬁ%, which
O

wes neglected in the Navier-Stokes equations, on the basis that it is

Pu

small in comparison with v ——. With the curve y(Rx) defined as that

Pu &

curve under which v ) is equal to or larger than v
v

ng, it wes
found that y(R¢) equals the displacement thickness at Ry ~ 5 and,
at large R, y(Rx) 1s approximately proportional inversely to the
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square root of Ry. Thus a reasonable conclusion appears to be that the

Blasius solution and therefore equations (1) and (2) should not be in
serious error for Reynolds numbers larger than the order of 10.

Equations (1) and (2) indicate that, at the leading edge or nose,
the rate of heat transfer becomes infinite, which, of course, is physi-
cally impossible. Actually, at small Reynolds numbers the heat transfer
must be limited by the finiteness of the random molecular motion, as
happens in free-molecule flows. Comparison of the heat transfer in the
free-molecule regime with equation (1) leads to the conclusion that the
meximum q occurs at a Reynolds number of the order of 1/10 of the
square of the Mach number. On the other hand, the failure of the Blasius
solution at smell Reynolds numbers is surely related to other approxi-

2
mations, such as the neglect of the term v %;%. In any event, the
effect of internal conduction is important over a range of Reynolds num-
bers very large compared with 10, so that the correctness of equations (1)
and (2) for Reynolds numbers less than 10 is not of great importance.
The integrability of the heat input assures no mathematical difficulties
and no serious errors even &t reasonably small Reynolds numbers.

The Flat Plate

The general three-dimensional heat-conduction equation is (ref. T):

3263 26 3) 28 s

vhere ky 1s the thermal conductivity and Q(x,y,z) is & heat-generation

function specifying the rate at which heat is created per unit volume at
the point (x,y,z). The problem of the flat plate heated through a bound-
ary layer reduces to the one-dimensional time-dependent heat-conduction
problem when temperature gradients normal to the stream direction are
assumed to be zero. The heat-generation function becomes the rate of
heat transfer per unit area q divided by the plate thickness h which
is assumed to be constant. Thus, the temperature of the flat plate
heated from one side is given by

1
v S R Y
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or

BRCE-a S RS (3)

\
aRx2 Rxl/2

&l
.
+

where

o
0
e
W
Y
|
|

Boundary and initial conditions are chosen as follows. At zero
time the plate has a uniform temperature T; so that

Kig=0 = O ()

and at large values of time the surface temperature must be T, that is,

K‘b——)co= 1 (5)

A boundery condition on the temperature gradient at the leading edge
may be established as follows. Assume that the plate is of unit width.
Then the frontal area is 1 X h, a finite constant. The condition of no
heat transfer through the frontal area then requires that the temperature
gradient there be zero, that is,

§<_> -0 (6)
(aRXR —-

X~
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The process of finding a solution of equation (3) proceeds as fol-
lows. At small values of time a good approximation (zero order) to
equation (3) is obtained by putting K equal to zero in the second term
of the right member; thus,

X_ 28 ,_ b 1)
ot aRXQ Rxl/2

It can be verified that

K = 2/ F(q) (8)
where
" = Ry
atl/2

satisfies equation (7) provided F satisfies

a°F

n
—_—t =
dn2 2

aF
dn

-ZF=- (9)

=W

L
Vn
In order to satisfy the boundary and initial conditions, F must remain
finite as n—> » and F'(0) must equal zero. Either a power-series
method or numerical integration of equation (9) will give such a solu-
tion. An iteration process may be used for obtaining higher-order
approximations to the solution of equation (3); for example, the first-
order approximation is obtained by substituting the zero-order approxi-
mation (8) for K in the second term of the right member of equation (3).

An equivalent process, suggested by the form of the zero-order approxi-
mation, is to write the solution of equation (3) in the form

K=>_ (\%)n P/ Fa(n) (10)

n=1

where
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substitute equation (10) into equation (3), collect terms, and equate

the coefficients of the powers of b/JE to zero. This solution is pre-
sented in appendix A, where the result is shown to be & set of ordinary
differential equations for the functions ¥. The convergence of equa-
tion (10) for large values of 7 1is easily demonstrable. The actual
results for the first three terms indicate that equation (10) is con-
vergent for small velues of 7. Values of F which permit equation (10)
to satisfy conditions (4) and (6) may be calculated in a straightforward
way (see appendix A). The functions F, have the limiting values

(-l )m‘l

Fp(n—w) =
o Y nn/2

and

Fn(n—0) = Cy

where the coefficients C,, are constants positive for odd n and nega-
tive for even n.

In the case of zero conduction (& = 0) the solution of equation (3)
which satisfies the boundary and initial conditions is

) e-bt/;axl/2

K =1 (11)

(22}

Equation (11) is also the asymptotic solution of equation (3) with con-
duction (a # O) in the 1limit of large 17 and, therefore, correctly gives
the temperature at finite values of Ry and sufficiently small values of
time. This result is plausible physically, since at sufficiently small
values of time and finite rate of heat transfer (Ry finite), conduction

effects should have affected the temperatures by & negligible amount.
The 1imit of large 1 also corresponds to large Ry and finite time.

Therefore, equation (11) indicates that the effect of conduction is
negligible at sufficiently large values of Ry. The functions F,, To,

and Fx as derived in appendix A are plotted in figure 1 against 1.

For comparison, the asymptotic functions (zero conduction) are also
shown. These results indicate that for values of 17 larger than about 5
the F, functlons are negligibly different from thelr asymptotic values

and hence equation (10) is negligibly different from equation (11).
Therefore, for Ry > S5ayt, the effect of conduction on the temperatures

is negligible.
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The solution for small values of 17 is perhaps of more interest.
As m goes to zero, the values of F, become the constants Cp. There-

fore, the solution (eq. 10) at the leading edge (Ry = 0 and 17 = 0)

becomes

2] n )-l- '

Knose = EE; <§%> t3n/ Cn (12)
n=

where

Cp = 1.9285; Cp = -2.05660; Cz = 1.59250

At small values of time, the temperature of the leading edge varies
as the 3/4 power of the time. A curve of the form

-9.kL7
b .3/h
2 . ) (13)

a

f(lL t3/4> =1 - (1 + 0.2041

Ve

Tits the leading-edge solution (12) in such a way that expanding equa-
tion (13) allows the first two terms of equation (12) to be given cor-
rectly and Cz = 1.605 (0.79 percent difference).

The functions F,y, F,, and FB were calculated and are plotted in

figure 1. Tn order to present instantaneous temperature distributions
over the flat plate, it is convenient to define a dimensionless time
parameter

bed/*
a = —
Ve
and a dimensionless distance parameter
2
v2/ 3R,
alt/3

These parameters are related to 1 in the following manner:

B
1]:—.
o2/3

Figure 2 shows the temperature distribution on the plate at a few chosen
values of a obtalned by using the first three terms of the summation in
equation (10). The vertical marks on these curves indicate the contribu-
tion from the third term in the summation and, to some extent, the accu-
racy. The fourth term in the summation would give & negative contribution.
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The Conical Shell

The heat conduction equation for the conical shell is derived in
the following manner. The principle of conservation of heat is applied
to a ring section of the conical shell of thickness ds parallel to the
conical surface. Temperature gradients normal to the conical surface are
assumed to be zero. When the shell is of constant thickness h and the
axially symmetrical rate of heat input per unit area through the outer
conical surface is the value of g, given in equation (2), the temper-

ature of the shell is

PpCpt % = kb (ﬁ + %§> + 0.35\3 ky - ppt/3 (Tow = 7)

g2 v R 1/2
8
or
E_offx ,1x), B g (14)
ot aRs2 Rs aRg Rsl/ 2

where s 1s the distance along the conical surface from the vertex and

2. o
2
pbc-bv
1/3
b=o,33_;kg_HP_r/
v h
T - T
K:———i
Taw - Ti

The fact that the initial temperature is Ty and the finel temper-

ature is Ty, glves the boundary conditions

Kgg=0 (15)

and

Ki 3y =1 (16)
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Since the frontal area of the conical shell is zero, the condition
of zero heat transfer through the frontal surface does not lead directly
to & boundary condition on the temperature gradient at the nose. How-
ever, the condition that

K remains finite for all values of t and R4 (17)

(which, incidentally, is implied in equations (15) and (16)) is adequate
to select a unique solution. It is interesting to note that the solution
selected by condition (17) has a zero temperature gradient at the nose.
The assumption that the conical~sghell thickness h 1is constant all the
way to the vertex is an obvious mathematical fiection for values of s
less than h/tan ® where 6 1is the cone half angle. This error in the
analysis of the conical shell is in such a direction as to give a rate

of temperature rise that is less than the actual value, that is, too
large a correction due to the effect of heat conduction. (This fact,
partly at least, prompted the analysis of the next section.)

The analysis of the conical shell (appendix B) is very similar to
that for the flat plate. The solution is written as

k=S <g—’>n 2% ay(n) (18)

n=1

where

S
at1/2

Tl:

The zero-conduction (or large 1) solution is

(31t

RB1/2

Koq=l"e (19)

The nose solution (1 = 0) is

=) n n
Khose = zz: <l39> t3 /h Dn (20)
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where the coefficients in the first three terms of the summation are

D; = 1.15622
Dy = -0.69618
Dy = 0.29080

The expression

-24.08
) (21)

@3/’-!-= -<+ @3/4
f(\/gt ) 1 1 o.o!+801\/gt

fits the nose solution (eq. (20)) almost perfectly for the first three
terms. The functions Gy, Go, and G3 were calculated and plotted in

figure 3.
In order to present instantaneous temperature distributions over

the conical shell, it is convenient to define a dimensionless time
parameter

V3 ol
Ve

and a dimensionless distance parameter

a,:

Rsbz/ 351/3

B
E

related to 1 by

Tl = -__B__
o2/3

Figure 4 shows the temperature distributions obtained over the conical
shell for a few chosen values of o by using the first three terms of
the summation in equation (18). The vertical marks on these curves
indicate the contributions from the third term.
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The Slender Solid Cone

The transient one-dimensional heat-conduction problem applies also
to the solid cone in the 1limit of small cone angles. The heat-conduction
equation is derived by applying the principle of conservation of heat to
an element of the s0lid cone, which is a spherical shell with center at
the cone vertex of radius s and thickness ds. For the axially symmet-
rical case, q, from equation (2) is the rate of heat input per unit area

through the conical surface. Temperature gradients tangential to the
spherical shell element are assumed to be zero. The resulting equation
for the temperature of the slender solid cone is

2, (Fr, 2}, sino %
% 35 T P 5 3

age l-cos @ 8
or
X a? 82K2 + ﬁi K + Pe (1 - K) (22)
ot 3R s ORg RS3/2
where
k-
PpSp v

sin ©
g:__—_.
1l - cos ©
T-T
K:—_i_.
Taw - Ti

and 6 is the half vertex angle of the cone.
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Since the initial temperature is T; and the final temperature is
Tyyys ‘the solutions of equation (22) must satisfy the conditions

and
Kt—-—)oo =1 (2)4')
and the condition that:
K remains finite for all values of t and Rg (25)

The condition (25) specifies a unique solution which has a gradient at
the nose varying inversely as the square root of Rg.

The solution is straightforward (appendix C), and may be written as

K =i< i ) &/ 1 (1) (26)

n=1 33/2
where

RB
o 1:1/ 2

1]:::

The zero conduction (large 1) solution is

e_bct/RS3/ 2

Ko = 1 - (27)

The nose solution is

© n

Knose = Z( De > tn/h En (28)

n=1 a3/ 2
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where
E; = 1.95940
Ep = -2.20696
Ex = 1.91106
The expression
Y 1/ b i -6.681
fl—=t77)=1-(1+ 02933 —= t 2
(35 )2 (2o o 5 ) !

fits the first two terms of the summation of equation (28) and gives the
third term within 2.0 percent. The functions H;, H,, and H3 were

calculated and plotted in figure 5.

In order to present Iinstantaneous temperature distributions over the
slender solid cone, it is convenient to define a dimensionless time param-
eter by

bct1/h

R

a =

and a dimensionless distance parsmeter

_ Rgbc?
L

a

p

related to 1 by
B
T]:._.
al

Figure 6 shows the temperature distribution over the slender solid cone
for a few chosen values of « obtained by using the first three terms
of the summation in equation (26). The vertical marks on the curves
indicate the contributions from the third term of this summation.
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DISCUSSION OF RESULTS

Figures 2, 4, and 6 present the temperature distributions over the
flat plate, conical shell, and slender solid cone, respectively, as a
function of the parameters o and B. On the basis of expressions (1)
and (2) for the heat transfer through the laminar boundary layer, o
and B are known functions of the flow properties of the air and the
variables of the problem in each of the three cases. However, since in
each of the cases analyzed the flow is steady Jjust outside the boundary
layer, the only real assumption is that the temperature and Reynolds num-
ber dependence of the heat-transfer expressions is correct.

Generally it is evident that the conduction effects are important
near the nose or leading edge. In the most forward region the temper-
ature is always lower than the zero-conduction temperature. Immediately
behind this region is a second region, for which the rearward boundary
is not well defined and where the temperature is higher than the zero-
conduction temperature. The boundary between these two regions moves

rearward as time increases. Because of the R° and R? factors in the
mass elements, the temperatures for the conical shell and for the slender
solid cone are negligibly different in the second region from the zero-
conduction temperature.

Nonweiler (ref. 3) calculated the equilibrium temperature of the
flat plate by taking into account internal conduction on the assumption
that the heat loss by radiation is of such importance that the equilibrium
temperature is greatly different from the adisbatic wall temperature. He
obtained an equilibrium temperature distribution which is quite similar to
the instantaneous distributions of figure 2. However, Nonweller's result
derives from a different cause. A conduction effect is present in his
time-independent case only because the adiabatic wall temperature is never
reached because of radiation heat transfer, an effect omitted in the
present analysis. Nevertheless, qualitatively, the effect of heat con-
duction near the leading edge is similar in the two cases.

For the flat plate and the conical shell the temperature at the
leading edge or nose varies initially as the B/h power of the time, with
a coefficient which is nearly the same for the two. Specifically,

First Term of Flat-Plate Solution _ C1 1
First Term of Conical-Shell Solution {3 D; 1.0k

If expressions (13) and (21) are assumed to be correct for the nose
temperatures, the ratio of the time required for the flat-plate leading
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edge to attain 1/2 of its total temperature rise (nose half-rise time)
to the time required for the conical-shell nose to attain 1/2 of its

total rise is 1.08. It must be noted, however, that the assumption of
e constant thickness.all the way to the vertex of the shell results in
a calculated rate of nose temperature rise less than the actual value.

The nose temperature of the slender solid cone varies initially as
the l/h power of the time. Since the solid-cone solution depends on the
Tlow and the body properties in a way different from that in the case of
the flat plate and conical shell, it is not possible to compare them
except for specific cases. The obvious and striking difference is that
the temperature gradient is infinite at the nose and that the tempera-
ture falls off much more rapidly for the solid cone than for the plate
and shell. :

It is interesting to estimate the extent of the forward region over
which heat conduction effects are significant. For the flat plate the
second region (temperature higher than zero-conduction temperature) is
significant. Approximately, 1 = 3.5 defines the extent of the con-
duction region; thus:

For the flat plate:

B Ry

= =3.5
23 g/

Ny =

For the conical shell and the slender solid cone, the second region is
not significant. The position at which the actual temperature equals
the zero-conduction temperature is taken as defining the significant
region. Approximately, these positions are:

For the conical shell:

R
o= = = 1T
a?/3 at /
For the slender so0lid cone:
R
1, = B _ 8 _2o0

e A g ey A S T © =t
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Solving these defining criteria for Reynolds number gives:

For the flat plate:

1/2
=T 55(@.%) S w2 = 9.3 x 105 w2
For the conical shell:
‘ 1/2 :
Rg = 1.75(%) %Mtl/e - 4.7 x 107 Mtl/e
For the solid slender cone:
ks W2 o 12 1/2
Rg = 2.0<Pbc > 3 Mt = 5.3 X lO5 Mt
b

where the final expressions (here and subsequently) are calculated for
standard air and copper.

If the approximate expressions (13), (21), and (29) for the forward-
edge temperatures are used, values of « corresponding to the nose half-
rise times are:

Flat plate:

« = 0.37 = 2 2% _ 0.000357 ?‘m 2/

a
Conicel shell:

@ = 0.61 = 2 3% _ o.000613 ‘%ﬁ 3/

Slender solid cone:

be tl/lt 1/h

= 0.0200gYM t
312 ¢

a = 0.37 =
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Combining these results gives for the Reynolds number extent of
the significant region at nose half-rise time:

Flat plate:
K 2/3
Ry Ak (o. 37) C e 2/O(03T B ey - 9.66 x 10T 12/3n2/3
o ,2/3 0.33 kg Vv

Conical shell:

o b2/3

Rg

5 2/9 . 2/3
= Pr <°‘6l f% Mh) - 1.69 x 10T M2/3p2/3

Slender solid cone:

b Y 1 2.42 x 10°
R, =2 (0.37)% = (23T ® ==
8o 2 0_335 k Pr2/3g2 g2

o’
0

The nose half-rise times are:

Flat plate:

t, = (0.37) —109x104
° L4/ 12/3

Conical shell:

L3 o 4/3
_ (0.61)"77 2/3 _ 1.01 x 10 B °

52/5 /3 u2/3

Slender solid cone:

2 _ 2.07 x 10°

= (0. 37)
by L 2he
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It is evident that the results depend upon the properties of the
material of which the bodies are made primarily through the conduction
parameter a. The heat-transfer pareameters b and b, depend on the

product PpCp? which varies only slightly from one metal to another.

1/2

However, the parameter a 1is proportional to <—EE—> . For the flat
"%

plate and the conical shell the nose half-rise time varies as the

1/3 power of ky; and the extent of the conduction region varies as the

2/5 power of Xky. On the other hand, for the slender solid cone the
nose half-rise time varies as the cube of Ik, and the extent of the
conduction region at nose half-rise time varies as the square of k.

A serious limitation of the present analysis results from the
assumption of uniform temperatures in the bodies in a direction perpen-
dicular to the stream direction, especially in the case of the slender
solid cone. Undoubtedly the solid-cone results are valid only in cases
of rather small half-vertex angles. The geometry factor g varies, for
sufficiently small vertex angles, as 2/9. Because of the strong depend-
ence on the factor g, with cone angles for which the analysis is reason-~
ably correct, equilibrium conditions near the vertex are attained in
extremely short time intervals. The error is not so serious for the
flat plate and the conical shell, although as the thickness h increases,
the error increases.

For the flat plate and the conical shell the extent of the signifi-
cant region and the nose half-rise time vary only slightly with Mach
number and thickness. The dependence of the results upon Mach number
and kinematic viscosity always occurs in the combination cM/v, so that
at constant temperature similar situations result if the Mach number is
proportional to the kinematic viscosity.

No suitable experimental data are aveilable to check the results of
this analysis.

CONCLUSIONS

The analysis of the transient heat-conduction effects for the semi-
infinite bodies the insulated flat plate, the conical shell, and the
slender solid cone, subjected to steady flight conditions beginning at
zero time and with the only heat transfer that through a laminar boundary
layer, shows that the effect is important only over the most forward por-
tions of the body. For all three bodies, the extent of the conduction
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region increases with the square root of time and linearly with the Mach
number. All results depend upon Mach number and free-stream kinematic
viscosity as the quotient of the two, so that similar results are obtained
when the Mach number varies directly as the kinematic viscosity.

For the flat plate and conical shell in typical flight conditions,
the time required for the nose to attain one half the total temperature
rise (nose half-rise time) is of the order of a fraction of a minute and
varies inversely as the 2/3 power of the Mach number. The extent of the
conduction region at nose half-rise time is of the order of inches and
varies linearly with the Mach number.

For the slender solid cone the nose half-rise time and extent of
conduction region &t nose half-rise time depend strongly on the cone
half angle. With cones sufficiently slender that the analysis is reason-
ably correct and in the same flight conditions, the nose half-rise time
and extent of the conduction region are one (or more) order of magnitude
less than for the plate and shell.

TLangley Aeronauticael Iaboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., August 13, 1953.
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APPENDIX A

SOLUTION OF FLAT-PLATE PROBLEM

The solution of equation (3)

where

= ——=
atl/2

NACA TN 3058

(A1)

(a2)

Substituting equation (A2) into (Al) and equating coefficients of

the powers of b/ya yields

1
F".*-T_].F'_EF P —
1
1 2 n 1 1
F
| 3 1
F"+=F,' - =F, = —=
2 2 "2 2 ,(—.q
F
1" 1 3n n-1
F +-F ' -=XF = —
n 27N 4 n r—n

> (A3)
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The esymptotic (large 1) solutions for the F functions are
(—l )D:I-l

Fp(n—e) = 22
nlnn/2

which when substituted into equation (A2) give the asymptotic solution
(zero-conduction solution):

Ky =1 - e‘bt/Rxl/ ¢ (Ak )

The ordinary differential equations for the F <functions may be solved
in sequence; ¥, may be written as the sum of a particular solution and

a power-series homogeneous solution

b 3/2 3.2 _ 1 k4
Fl=-3-ﬂ/+cllzl.+§'f] -EB-T] + . o o+

(-1 ta(1, 1,0 )% + . . ] (45)

where the recursion formula for the coefficients is

|hr - 3

a(i,i;r)
h(2r + 1)(2r + 2)

a(1,1;r+1) =

The quantity Fy'(0) = O which is required by the boundary condition (6).
Proceeding with similar solutions for F, and F3 yields

F2=-§T]3+Cl %ﬂ3/2+

kry3
ale, ;172 - . . (-1)Hae,Lrm 2 o+ . . .|+

Cp E.-f— a(2,2;1)n2 + da(2,2;2)nt -

a(2,2;3)m6 + . . .(-1)d(2,2;r M2 & . . :] (86)
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where
a(2,1,0e1) ba(1,1;r+1) + |k - 3la(e,1;r)
(br + 7)(4r + 5)
a(2,2;r+1) = lor - 3| a(2,2;r)
2(2r + 1)(2r + 2)
and

8 9/2 2.3
Fy = “567 1 /2, Cy l:§ 0+ a(3,1;1)0° -

83,5207 + . . (-1 la(3, e 4 L ] .
Cp [% /2 5 a(3,2,107/2 + a(3,2;2 012 -

bri3
a(3,2;3)9/2 & . . (-1)Fa(3,2;0)0 B 4 . . :‘ +

Cs E+ a(3,3;1)12 + a(3,3;2)% + d(3,3;3)n6 -

43,5808 + . . (-1 a3 0+ . . :I

where
hd(2,1;r+1) + |4r - 3[d(3,1;r)

d(3:15r+l) =
h(er + 5)(2r + 4)

bd(2,2;r+1) + |br - 6ld(3,2;r)
(br + 7T)(4r + 5)

[ir - 9]
h(er + 1)(2r + 2

d(3,2;r+1) =

d(3:33r+l) =

) a(3,3;r)

(AT)
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The series expansions for the F's (that is, equations (A5), (A6),
and (AT)) may be used to evaluate the F's, or the differential equa-
tions (A3) may be integrated numerically. The series expansions were
used for the calculation presented herein. For n >3 +the series
method probably involves more labor but can yileld greater accuracy. In
either case, the boundary condition (6) requires that

Fp'(0) =0

and the constants Cn

FL(0) = Cy

must be determined so that each F has its proper asymptotic (large 1)
value,

Each new F involves one new C. Utilizing the fact that at suf-
ficlently small values of time the solution (eq. (A2)) reduces to one
term permits Cj to be calculated analytically.

The method consists in constructing a solution of the one-
dimensional heat-conduction problem for boundary conditions consistent
with the present problem at small values of time and then evaluating this
solution at the leading edge of the plate. A well-known solution of

Ol _ g2 (a8)

is

1 -(x-8)%ses
EaJEE

This solution corresponds to an initial temperature distribution which
is zero everywhere except at x = ¢ and is Infinite at x = & 1in such

a way that
+00
f Ty(x,0)dx = 1

~00

T*(X,'t) = (AQ)
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In other words, equation (A9) corresponds to an initial temperature
distribution given by the Dirac & function, &(x - t). The essence

of the method is to interpret equation (A9) as the solution corresponding
to injecting a unit quantity of heat at x =¢t at t = O.

The construction of a solution satisfying the conditions of the
present problem (at small time) proceeds as follows. In order to insure

gg =0 at x = 0, the input is made symmetrical about x = O:

T(X’ g,t) = 1 E—(X—g)z/ll-azt + e-(x+§)2/ll-a2t (Alo)
2aJ§E

Equation (A10) corresponds to unit heat input at t =0 at x = ¢
and x = -t. Then

_ 1 ® b | ~(x-£)2/ua®t ~(er£ )2 uat
T(x,t) 2aﬁﬁ \/Eﬁe + e de (A11)

corresponds to putting 5; d¢ units of heat per unit time at + = 0
3

into the interval d& at &. Then, if the input rate is assumed constant
in time for sufficiently small times, and is integrated over a small time t

t pw el 2/h 2 _ 12/1a2t
F(x,t) = —2 f f —l—l: (e-8)"/ha | -Gt e)That]y, 4 Al2
(x vzdo Jo JEJE e + e ¢ dt (A12)

the expression for the temperature at x and at a small time t 1is
obtained. At the leading edge (x = 0), equation (Al2) reduces to an
expression which can be evaluated

b tf‘” o _£2/he2t
F(0,t) = 2a\/i/3) . m e dt dt (A13)

Integrating first with respect to & gives

t
F(0,t) = ;%‘j; % V2atl/2 21"(%)] at (A1)
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and, finally, integrating with respect to t yields

2\3 r(l)
_ b ,3/h y
F(0,t) = B t Rt (A15)

Comparing equation (A15) with the first term of equation (A2) at x = 0O
(q = 0) yields

a5

= 1.9285
113

Cq =

The coefficient Cq could also be determined by equating the heat

inputs in the cases of conduction and zero conduction (at small times)
over a sufficiently large forward portion of the plate. This procedure
would result in equating the integral of equation (A5) at, say, 7 = 6.0
to the integral of the asymptotic (zero-conduction) value of F; at the

same 1. The value of C; is checked by Fy eapproaching its proper
asymptotic value. The C,'s for n > 1 are determined by choosing

them so that the corresponding F,'s have their proper asymptotic
values.
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APPENDIX B
SOLUTION OF THE CONICAL~-SHELL PROBLEM

Substituting equation (18)

i il <%E)n Y gy(n) (B1)
where
- RS
 atl/2
into equation (14)
o[

+ ‘B}/’ (1 - K) (B2)

and equating the coefficients of the powers of b/\ffa yields

e (e P - 2o

vy (L Neor -3 g, = L

The asymptotic (large 17) solutions for the G functions are

(B4)
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(the same, incidentally, as for the F functions). When the esymptotic
values of the G functions (eq. (B4)) are substituted into the solu-

tion (Bl), the asymptotic (zero-conduction) solution (eq. (19)) results.

The boundary condition (17) (X remains finite for all values of t
and Rg) requires that

G, remains finite for all values of 7 and n (B5)

Series solutions for the G functions satisfying condition (B5) are

Gy =..% n3/2 + Dy [}-+ E n2 -2 nh + .. .(-l)r+ld(l,l;r)1]2r + .. Z}

16 102k
(B6)
where
a(1,1;m1) = ¥ =31 401 100)
k(or + 2)°
Similarly,
Gp = -é% 3+ Dy [% n3/2 + d(2,l;l)n7/2 -
4ri3
ﬂghaﬁﬂ2+...@n“%mgﬂm]2-+..] +
D, {1+ a(2,2;1)n° o)l -
] s LN + d(2;2;2)ﬂ
d(2,2;3)n6 + . . J(-1)Fa(2,2;7 )T + . . Z]
where

hd(1,1;r) + |br - T]a(2,1;7-1)
(b1 + 3)°

d(2:l§r) =

a(2,257) = 12 =50 4(2 2,r.1)
8r
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and

.16 92, p |23 as, 1m0 -

G 6561 7/ + |:81 1 (3,110

a3, 52m7 + . . (-1, e 4 L ] +

Dy I};- /2 4+ a(3,2;1n7/2 + a(3,2;2)03/2 -

a(3,2;3)15/2 + .(-1)%a(3,2 ,r)n 7 :I
1102 .o )kt .z )0

Dz |1+ a(3,3;1)m° + a(3,3;2t + a(3,3;3)n° -

a3,3:8)m0 + .« . (-1, . . :]

where
4d(2,13;r+1) + |br - 3]d(3,1;T)
k(2r + 5)°

d.(3,l}1"+l) =

sd(2,2;m+1) + |br - 6|a(3,2;r)
(sr + T)?

a(3,2;r+l) =

a(3,3501) = L2 = 9L a5,3m)
hzr + 2)

No straightforward analytic method for determining the constant Dy

was devised. The D coefficients were determined by choosing them 8o
that the series expressions for the values of G, were close to their

asymptotic value at 7 = 4.5. These constants appear in the nose solu-
tion (x = 0) since G,(0) = D,.
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SOLUTION OF THE

APPENDIX C

SLENDER-SOLID~-CONE PROBLEM

Substituting equation (26)

where

into equation (22)

atl/2

) b
A _ 2P, 2 x )\, P g
3t &2 Ps s R 3/2
and equating the coefficients of the powers of Db, 33/2 yields
H" + (2 + 3)3 v X o1
1 (n 271 T 3/
Ui
W, (2,1 1 H
Hy +(—+—H2'- Hy = —F%
1 2) 2 1]3/2 >
" 2 7 ' n _Hn-l
' (5 D TREmT o
/2

for the H functions are

33

(c1)

(c2)

(C3)

(ck)
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When the asymptotic values of the H's (eq. (Ck)) are substituted
into the solution (Cl), the asymptotic (zero-conduction) solution (27)
results.

The boundary condition (25) (K remains finite for all values of t
and Rs) requires that none of the H functions diverge as 1 —> O.
The series solution for H; satisfying this boundary condition is

H; = -%-nl/a + By L} +a(1,1;1)9° -

a1, et + .. L1 A, ) L Z]

where

[br - 1|

a(1,1;r)
h(er + 2)(2r + 3)

a(1,1;r+l) =

The series solution for H2 is

Hy =-§ 1+ By % W2 4 a(e, ;10972 -
hrel
a(2,1;2)0%2 & . NE AR TR N

E, [} +d(2,2;1)0% - d(2,2;2)0% + . . L (-1) (2, 2;r )T 4 L . Z}

where

a(2,1;r+1) = 4d(1,1;m+1) + [br - 1a(2,3;r)
(br + 5)(4r + 7)

lor - 1]
2(er + 2)(or + 3)

a(2,2;r+1) = a(2,2;r)
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The result for H3 is

__8 3/2 2 113
By =-gg Wt B [3 n+d(3,1;1)07 -

a3,52)0 + . . (-1 G, e . L. J +
E, |2 0%/2 4 a(3,2;1)05/2 -
p
1 hryl
a3,2;20m9/2 + . L (-1 5,500 2 4L L | 4

Where

bd(2,1;r+1) + |br - 3 a(3,1;r)

d. 1 +l) =
(3) T )_‘_(ar " 3)(2r " )-l-)
a(3,2;r+l) = hd(2,2;r+1) + [hr - 2ld(3,2;r)
(br + 5)(4r + 7)
a(3,3;r+l) = |br - 3] a(3,3;r)

h(or + 2)(or + 3)

As 1 —> 0, the H functions take the values H, = E, which,
when substituted into the solution (26), gives the nose solution (28).

35

E3P+deﬁﬂh2-ﬂm%m$+...bmmheawh&+-.]

The constants E, (up to E3) were determined by choosing them so that
the series expressions for the H functions were close to their asymp-

totic values at 1 = L4.5.
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